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SPECTRAL THEORY FOR THE DIFFERENTIAL EQUATIONS
OF SIMPLE BIRTH AND DEATH PROCESSES

By W. LEDERMANN anp G. E. H. REUTER
The University, Manchester

(Communicated by K. Mahler, F.R.S.—Received 2 December 1952)
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The enumerably infinite system of differential equations describing a temporally homogeneous
birth and death process in a population is treated as the limiting case of one or the other of two
finite systems of equations. Starting from the expansion of a finite matrix in terms of its associated
idempotents, the solutions of the infinite system are displayed in spectral form which, in general,
is written as a Stieltjes integral involving a spectral function. This method facilitates the investiga-
tion of asymptotic values and of the ergodic property of the system.
When the birth- and death-rates satisfy certain conditions of regularity, the spectrum is discrete
and the solution can be written down more explicitly. Concrete examples are given, where the
system has two distinct solutions for any set of initial conditions.
Finally, our method is applied to the known case of linear growth and to a problem in the theory
of queues, confirming a result and a conjecture by D. G. Kendall.
INTRODUCTION
This paper is concerned with the temporally homogeneous birth and death process in
a population whose state (size), at an instant ¢, may be given by any one of the integers
0,1,2,.... As regards the notation and the definition of the relevant concepts we follow
Feller, who, in chapter 17 of his book (Feller 1950), has given a very lucid introduction to
the theory.
If p;(¢) (j = 0,1,2,...) is the probability that, at time #(>0), the system is in the state
J» then the fundamental differential equations of the process can be written in the form
d
T 20(t) = —Aopo(t) + 1 £1(2), (0-1)
ds ,
d .
a‘tﬁj(t) = /Ij-hbj-l(t) - (’Ij +ﬂj)pj(t) +:uj+hbj+l(t)> (0-2)
(j= ]., 2’ ...), WhCI‘C /10, Al,)tz, ...; ﬂl;‘ﬂz,ﬂs,--;-,
Vor. 246. A.914. (Price 11s.) 41 [Published 12 January 1954
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322 W. LEDERMANN AND G. E. H. REUTER ON THE

are the birth- and death-rates corresponding to the various states. Throughout the paper
we assume that the A’s and #’s are strictly positive constants possibly with the exception of A,
which may be zero or positive. Processes in which 1,>0 permit of a revival through
‘immigration’ after the population has become temporarily extinct. Such processes differ
in many respects from those in which A, = 0, where the state 0 is an absorbing barrier.

It is convenient to define E— (0-3)

which makes it possible to regard (0-1) as a special case of (0-2).
The differential equations (0-1) and (0-2) may be written in matrix form thus:

Lo = pl0) 4, | (0:4)
where p(8) = (bo(8), 1(8), p5(2), )
is an infinite row vector and
—4 Ao
o — A +p) Ay
A= Ho — (g tpy) Ay (0-5)

is an infinite matrix. We note that all row sums of 4 are zero.
The solutions of (0-4) must satisfy the further conditions

0<p <1 (1=0), | (0:6)
20 pH<1 (t=0). (0-7)

Itis known (see Feller 1950, p. 369) that the inequality sign in (0-7) cannot in general be
dispensed with.
In order to adapt the solution to any given set of initial conditions

2;(0) =0; (j=0,1,2,...), (0-8)
where 0<w,;<1, éowjgl,
we construct an infinite sequence of standard solutions p;(¢) (i = 0, 1,2, ...) with the initial
conditions £5(0) = 3.
Thus (%l’ij(t) = A1 i1 () = (A1) by (8) -+ 15185541 (D)5 (09)
0<p ()<l (1=0), (0-10)
and jﬁo bs() <1 (£20). (0-11)

The functions pi(t) = é):o wpi () (J=0,1,2, ) : (0-12)
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EQUATIONS OF SIMPLE BIRTH AND DEATH PROCESSES 323

then constitute a solution satisfying the initial conditions (0-8). For it is clear that, for fixed j, the
infinite series (0-12) converges uniformly for >0, as also does the series

d
;wia—tl{)ij(t), (0-13)
because, by (0-9) and (0-10), ’

)dtpzj ] 1_}"/1 +lu]+lu]+1 L .

say, so that (0-13) is majorized by

We therefore have

d @
G =0 d,p,]a)

from which the assertion follows after substituting for & p,.j(t).

Summarizing these preliminary remarks we can state our problem as follows: given the
matrix A (0-5), it is required to find a matrix

P(t) = (p;(1))
whose elements are differentiable functions of t (=0) satisfying (0-10) and (0-11), such that

d
dt
and P(0) =1, (0-15)
where 1 is the infinite unit matrix.
In the theory of Markov processes it is customary to impose the further condition

P(t-+7) = P() P(r) (t,r>0), (0-16)

P(t) = P(t) 4 (0-14)

which is known as the Chapman-Kolmogorov equation.

It appears that the problem has been attacked from three different directions by previous
writers.

(i) Using powerful methods Feller (1940) has given an existence proof for a very wide
class of Markov processes, which contains our problem as a special case. His procedure is
one of successive approximations. We have shown elsewhere (Reuter & Ledermann 1953,
hereafter quoted as ‘D’) that for systems with an enumerable number of states the existence
of a solution can be established with fairly elementary means. These proofs do not lend
themselves to any explicit construction of the solution.

(i) If 4 were a finite matrix the solution of (0-14) could be written down at once in the
form

P(t) =exp(td) =

rl (t4)". (0-17)

g,Ms

But in the case of an infinite matrix the series does not always converge, especially when the
elements are unbounded. However, Arley (1943) and Arley & Borchsenius (1945) have
shown that the validity of (0-17) is ensured, at least for a sufficiently small range of ¢, pro-
vided the quantities 4, and g, do not grow faster than .

41-2
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324 W. LEDERMANN AND G. E. H. REUTER ON THE

(iii) By using a probability-generating function
#(zt) = 3 2p0),

Kendall (1949) and others have obtained explicit formulae for the solution in the cases
where A, and g, are linear functions of 7, more precisely, where
A, =An+kK, p, = un. (0-18)

It seems difficult to apply this method when 4, and g, are more complicated functions of z.

In the present paper, solutions of the problem will be obtained by a procedure whose
main feature may be described as follows: the infinite matrix equation (0-14) is regarded as
the limit of a sequence of finite matrix equations of increasing dimensions. The solutions
of the finite equations tend to functions which are seen to be solutions of the infinite system.
Sequences of this kind may be constructed in many ways, but we shall here be concerned
with only two such sequences.

(i) The nth (complete) section of A is the (n-1)-rowed matrix

— 4, Ao
o — (A ) A4
AW = o —(Atus) Ay

oy — Ay ) Apy
o — (i)
derived from 4 by deleting all elements except those occupying the first 741 rows and
columns. The system of differential equations

%ﬁo:X@mm(ﬂmzﬂm

has the unique solution X = FO(t) = exp (¢4™).

In order to examine the limit, when n— oo, we find it convenient to write this matrix in its

spectral form, thus "
Pl = 3 exp (149) DY, (019)
r=0

where the a® (r = 0,1, ...,n) are the eigenvalues of A® and the D are the corresponding
orthogonal idempotent matrices. Then (in a sense to be made more precise later) we have

lim FO(f) = F(t),

and the infinite matrix F(¢) satisfies (0-14) and all the additional conditions.
(ii) By the nth modified section of A we mean the (n-1)-rowed matrix

—4 Ao
w4 ) A
B0 — fhy — (A tp) Ay

Hn-1 - (/In—l_‘t_/’ln—-l) /171:—1
Hy =ty
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which differs from A® merely in the last element. The system of differential equations

S v =y B (Y(0) = 10)
has the solution Y = G"(t) = exp (tB®),

or, in spectral form, GO(f) = 3 exp (1f®) E®, (0-20)
r=0

where the % and E® (r=0,1,...,n) are the eigenvalues and associated idempotents of
B®, We cannot prove that G™(#) tends to a limit as n-> oo, but using a general result of
Helly (1921) we can show that (0-20) always has a convergent subsequence

lim G*(¢) = G(¥),
k—>

where the infinite matrix G(f) is again a solution of our problem. It may happen that
F(t)£G(2).

The formal apparatus dealing with finite sections of both kinds is assembled in chapter I.

The limit process is carried out in chapter II. The finite sums (0-19) and (0-20) are first
transformed into Stieltjes integrals involving spectral step-functions which, possibly after
the selection of a subsequence, tend to the spectral functions of the solution of the infinite
system.

The method of spectral resolution facilitates the computation of the asymptotic values
F(c0) and G(00), which can be written down explicitly in many cases. This concludes the
general theory.

Chapter III is devoted to a discussion of a particular class of birth and death processes
which we term analytical. In such a process, the A, and x, are subject to certain regularity
conditions which can be summarized by

)‘n+1 . a 1
P =1 0(),

n

L, (b (1
mo c(”ﬁ*‘)(ﬁé))’

where the parameters a, b and ¢ (>0) are real constants. The theory of analytical processes is
developed independently of chapter II, and explicit formulae are obtained for the solutions
F(t) and G(£). It will be shown that for certain values of the parameters these two solutions are distinct.
This phenomenon of non-uniqueness is interesting and incidentally answers a question
asked by Doob (1945).

The final chapter, IV, contains some examples. In particular, we obtain by our method
the solution of a problem in the theory of queues.

CHAPTER I. FINITE SECTIONS
1. Summary of matrix_formulae

It is convenient to collect here some well-known results about finite matrices which are
fundamental for our subsequent analysis.

Let C be an nxn matrix with distinct e1genvalues Y15 V2 -+» V- Then there exist
7 NON-ZETO TOW-VECtors X, Xy, ..., X, such that

x,C=yx (r=1,2,..,n), _ (1-1)
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326 W. LEDERMANN AND G. E. H. REUTER ON THE
and 7 non-zero column vectors y1, ¥s, ..., ¥, such that
Cy,=7v,y. (r=12..,n). (1-2)
Since eigenvectors that correspond to distinct eigenvalues are linearly independent, the
matrices -
X= ()9 Y:(yb’yn>
'xn

are non-singular. By (1-1) and (1-2)

%, CYs = ¥, %, Ys = VsX Yo
so that X,y = y.x. =0, (1-3)
if r=£s5. Let 0, =xy. =yx (r=12..n) (1-4)
and introduce the diagonal matrix

® = diag (0,,0,,...,0,);
then XY =0, (1-5)
whence it follows that @ is non-singular and therefore

0,0 (r=1,2,...,n).

We can combine (1-1) and (1-2) into the single matrix equation

XCY = 0T,
where I'=diag (y1, 72 s V)
Hence C=X10I'Y1=YI'O1X,
that is, C=3y,0yx,

r=1

This result may be written in the form

C= 37, (1:6)

r=1

where J=0"yx, (r=1,2,...,n). (1-7)

The matrices (1-7) have the property that
Ji=Jd, S =0 (rs). (1-8)

They are called the orthogonal idempotents of C.
We note that each of the idempotents is associated with one of the eigenvalues. The

system of idempotents is complete in the sense that

It =1 (1-9)
Yor if J = 5: J,
s=1

it is easily verified that x,J = x, (r = 1,2, ...,n), i.e. that XJ = X, which implies (1-9)
because | X |=0.
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EQUATIONS OF SIMPLE BIRTH AND DEATH PROCESSES 327

Equation (1-6) will be referred to as the spectral resolution of C. It applies to any matrix with
distinct ergenvalues. From (1-6) we can obtain the spectral resolution of every positive power
and hence of every integral function of C. In particular,

o] 1 n
exp C = gov—!C” = gl(expyr) J,. (1-10)

2. The spectrum of the nth section

In order to construct a solution of the infinite matrix equation (0-14) we first solve the

finite matrix equation d
EﬂX(t) = X(¢) A™, (1-11)
where the (n+1)-rowed matrix
—2, Ao
o — A+ ) A,
Am — o — (At py) A

(1-12)

oy — (Ayy ) -
is called the nth (complete) section of A (its rows and columns are numbered from 0 to 7), and
quantities connected with the solution of (1-11) will generally bear a superscript or a suffix 7.
The (n+1)-rowed unit matrix will be denoted by I®. We observe that all row-sums of A®
are zero, except the last, which is equal to —A2,.
The solution of (1-11) with the appropriate initial conditions X(0) = I® can be written

down in the form X — exp (tA®) = Fo(t) = (£1(£)). (1-13)
We shall now show that f(f) >0 when ¢{>0. In fact, let
g = max (Ao, Ay 4y, ooy A, +2,) .
Then M = tqI™+4-tA™

is a matrix all of whose elements are non-negative. From the definition as a power series

it is clear that the elements of exp M are likewise non-negative. Hence so also are the

elements of exp (14®) = exp (—tq1®) exp M,

since exp (—tqI®) = exp (—tq) I®.
Thus we have W =0 (4,5 =0,1,...,n; £>0), (1-14).
P(0) =08; (4,7=0,1,...,n). (1-15)
Post-multiplying the identity '
d
— FO( = @ (@
th (1) = F®(¢$) A
by the column vector 1

1

9

1
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328 W. LEDERMANN AND G. E. H. REUTER ON THE
we find that d i fin(t) = —A, [fP(1) <0

dtj=0 ] nJin
by (1-14). Since S f(0) =1,

=0
it follows that f PH<1 (I=0,1,...,n; t=0), (1-16)
j=0

and in particular 0< fiP(t) < 1. (1-16)’

Our aim is to obtain a spectral resolution of #®(f). But before we can apply (1-10) we
have to show that the eigenvalues of A® are distinct. This leads to a discussion of the
sequence of polynomials

g“i"/lo '_/10
—py EHA -4
é. (&) = —Hy Eddytpy Ay (1-17)
Hp—1 gﬁl' /In—-l +lun—l o /In—-l

(n=1,2,...). These polynomials play a fundamental part in the theory, and their pro-
perties have to be studied in some detail.

On expanding the determinant (1-17) with respect to the last row and column we obtain
the recurrence relation

which is valid for n>>1 if we define
$1(8) =1, ¢o(£) =E-+4, (1-19)
We note that By (&) = E2+ (Ag+ Ay +py) E+ A,

The roots of ¢,(§) = 0 will be denoted by
afd o, ..., o,
so that $.(£) = ﬁ (E—ai?).
r=0

The existence of the recurrence relation (1-18) enables us to establish a number of facts
about the «” which will be needed later. Our argument is based on the following:

LeEmMMA 1. Let P(£) (n = 1,2,3, ...) be a sequence of polynomials defined by
Fy&) =1, P() =E+by, }
P(&) = (E+a,) By(§) +0,5,5(8) =0 (n=2,3,...),
where the a, are real and the b, are positive numbers such that
P,(0)>0. (1-21)
Then the roots of P,(£) = 0 (n=1) are distinct and negative and are separated by the roots of
F,_,(§) =0.

(1-20)
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Thus we may put P(&) = ﬁ (E—),
r=1
wher 0>y sy~ Sy -
e N & ! (1-22)
and 0> Y > YD >y > plr-Ds S g S yn=D o) J

Proof. We observe that (1-20) implies that P,(£) is a polynomial of degree n whose leading
coeflicient is unity. Since b,>0, the only root of P,(§) = 0 is negative. Using (1-21) and
(1-20) for n = 2 we find that

Py(0)>0, Py(—b))=—b,<0, P(—00)>0,

(where by the last statement we mean that P,(§) is positive for sufficiently great negative
values of £). Thus each of the intervals

(- 0, _'bl)a (~bla O)
contains a root of P,(§) = 0; and, since —b, = y{, we have
0=>7P>7P =7

Thus we have established a basis for induction.
Assuming now that n>3 and that

0>y D> y=2 s S yn-D s g9 ) |
we deduce that sgnP,_,(y D) = (—1)"1 (r=1,2,...,n—1). (1-23)
On putting £ = y»~D in (1-20) we obtain that
| B ) = =0, By (r7 ),
whence sgn P (yn D) = (—1)" (r=1,2,...,n—1).
Since sgn P,(— o) = (—1)", it follows that each of the intervals

(= c0,750)s (0, Y95, oy (0, 0)

contains a root of P,(§) = 0. This completes the proof of the lemma.
In applying the lemma to the polynomials ¢,(£) we have to distinguish two cases:

() 4)>0. Put P(E) =¢,,() (n=0,1,2,..).

n

The recurrence relation (1-18), with n+1 instead of n, is of the type required in the lemma,
and it remains to show that ¢,(0) > 0. In fact,

$,(0) =24, ...4, (n=0,1,2,...). (1-24)
For this is certainly true when 7 is equal to 1 or 2, and on putting £ = 0 in (1-18) we get

$,(0) = (A, 44,) Aoy oo Ayy) — Ay, (Ao Ay - A, g) = Qg4 e Ay

Hence by the lemma the roots of ¢,(§) = 0 are distinct and negative and are separated by
the roots of ¢,_,(§) = 0.
(ii) 2, = 0. Equation (1-24) now shows that ¢,(0) = 0 (z = 0,1, ...), so that we may put

$u(&) = £8,(5). (1-25)

Vor. 246. A. 42 .


http://rsta.royalsocietypublishing.org/

I ¥

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Vo

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

330 W. LEDERMANN AND G. E. H. REUTER ON THE
The polynomials ¢,(£) satisfy the same recurrence relations as the ¢,(£), viz.
$2(8) — €+, + 1) 1 () -+ 1,85 (E) = 0. (1-26)
In order to be able to apply lemma 1 to the polynomials we have to show that
| $,000>0 (n=0,1,2,...).
$2(0) = (A 4-14y) -1 (0) + Aoy 4,8, 5(0) = 0.
Put zo=1, z,= (A1;...1,)71¢,(0). (1-27)

By (1-26),

The quantities z, satisfy the recurrence relation
/Inzn_“ (/In +/un> Zn—l_}—/ln—llunzn-ﬂ =0 (7222)

This equation may be written MAz g Az, =0, (1-28)

where Az, = z,—z,_,. On solving (1-28) recursively and noting that

Azy = zy—zy = YA ) — 1 = /A,

Y Ve RV
we find that Az, = -

As expressions of this kind will occur rather frequently in the sequel, it is convenient to use
the following abbreviations:

n

l_l "———'—/10, lo == ]_, lV —_ (/11/12... AV>—1 (V}l),} (1.29)
my =1, m,= (1“1/‘2 "'/‘v)hl <V>1)>
LAy A, m
and wy=1, w,=-1-2"""n_"1 (p>1), 1-30
0 ’ n fyfhy -, ln ( = ) ( )
n
We can then write z,= > w,,
y=0
n
and hence $,(0) =013 wl, (1-31)
y=0
which makes it obvious that ¢,(0) > 0.
THEOREM 1. The eigenvalues of A™ are distinct and negative or zero, say
0=a) >a®>...>aP, (1-32)
where af? = 0, (1-33)
if and only if 1, = 0.
The ergenvalues of A=V separate those of A®, so that
0= Zaf V>a >af D> .. >a® >anmD > g, (1-34)

We are now justified in applying to A® the spectral resolution outlined in §1. For this
purpose we have to find non-zero vectors " and y™ (r = 0, 1, ..., n) satisfying

X (@I — A®) — 0, (1-35)
(@I — A y®" — 0, (1-36)
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respectively. The vectors need not be normalized so that we can take ™ (y’) to be pro-
portional to any non-zero row (column) of

adj (aT® — A®). (1-37)

IfA,>0, it is seen, after some elementary calculations, that the last row and column of (1- 37)
are non-zero. Their elements can be expressed in terms of the polynomials

$,(6) (v=0,1,2,...).
In fact, with a suitable choice of a factor we find that
X = (L,myBo(o?), mydy (), ooy My b1 (7)), (1-38)
u" = (Ao lo@o(e™), Ly (), -y by B (457)) (1-39)
(r=0,1,...,n).

If 4, = O these formulae can still be used except when r = 0, in which case y§* would
reduce to the zero vector. Since we now have af¥ = 0, the corresponding eigenvector, say
7(n)’ 3 3
Yy, satisfies the equation A7 — .

A non-zero solution is furnished by the first column of (1-37).

Let T (¢ NG ) h (1-40)
It can be verified that we may put
r—1 n -1
=1, G =1-(3 w)(2 wr) (1-41)
v=0 »=0
(r=1,2,...,n).
Defining Om = xmy®'  (r=0,1,...,n) (1-42)
as in (1-4), we obtain g =1 if A,=0,
n (1-43)
and Hﬁn) = z lv~lmv{¢v—l<“£’n))}2
v=0

in all other cases, i.e. for 0<<r<n when ;>0 and for 1<<r<{n when 4, = 0.
The idempotents belonging to A™ will be denoted by

Dy — g0 /82 = (4, ), (144)

where we describe the position of a matrix element not by suffixes but by two integer
variables i, 7 (0<¢,j<n). For later reference it is necessary to write down explicit expressions
for the matrices (1-44). Using (1-39), (1-40) and (1-41) we find that

P (i, j) = (P8, if Ay =0, (1-45)
and dP(i, j) = boymyi 1 (o) ¢y (047) 057 (1-46)

in all other cases.
Finally, we arrive at the spectral resolution of the matrix F®(¢), introduced in (1-13),
namely, ‘

F0(t) — 3 cxp (o) DY, (1)
P(0) = 3 exp () d(i, j) (148)

0

i

;
(6, =0,1,...,n).

42-2
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3. The modified sections

As we have already indicated in the Introduction, a solution of the problem can be con-
structed by letting #— 0o in (1-48). This solution, obtained from the sequence of complete
sections, plays a fundamental part in the theory of more general discrete Markov processes,
as we have shown elsewhere (D). For certain types of simple birth-and-death processes it is
possible to modify the standard procedure and to obtain a solution of a slightly different
form. In many cases the two solutions can be proved to be identical, but there are circum-
stances (chapter I1I, §12) where they are distinct and where the problem has not a unique
solution. This second solution is also obtained from a sequence of finite matrices, G*(¢),
which we are now going to define.
If, in (1-12), we change the last element from —(A,+p,) to —pu,, we obtain a matrix

— 4 A
w — A+ ) A4
B® — My —(AgFpy) Ay o (1-49)

P (/172_1—}—}!”_1) An—l
Hy Ty
which will be termed the nth modified section. As all row-sums of B® are zero, the matrix

corresponds to a finite Markov process with 741 states. The characteristic polynomlal of
B® will be denoted by ¥, (£) and the eigenvalues by

B, po, L f, (1-50)
Thus Val6) = |E19—B9| = TT (E—4) (1-51)
(n>1). Itis convenient to define
Yoi(8) =0, #(6) =& (1-52)
Since B® is a singular matrix, one of its eigenvalues is zero, and we shall put
AP =0 (n=0). (1-53)
On expanding (1-17) with respect to the last row we get the identity
3n(8) — A, 8,1 (8) = V() (1-54)
(n=0). We shall now show that the polynomials y,,(£) satisfy the recurrence relation
Vul&) = E+Aums 1) Yea (€) F sty ¥0(6) = 0 (1-55)
valid for n>1, remembering that g, = 0. For (1-18) may be written (omitting the argu-
ment <) by Auths ) a1 ) = b (1-56)
whence, by (1-54), V=tV = EPyy- (1-57)

In (1-54) replace n by n—1 and then multiply throughout by ¢, thus
§¢n 1 g/ln 1¢n 27 g%n 1
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On eliminating the ¢’s by means of (1-57) we obtain

(V= Vne1) = Aot (Vo1 — a1 Vn2) = Eers

which is equivalent to (1-55).
In view of (1-53) we have, of course, ¥,,(0) = 0 for all values of 7, so that we may put

Vul) = £V (). (1-58)
The polynomials ¢,(£) satisfy the same recurrence relation as the ¥, (£), viz.
%n(g) - (g—{—/{n—l_}—ﬂn) {ﬁn—-l(g> +/ln—llun—lgﬁn——2(€) =0 (159)
(n=1), and in accordance with (1-52) we have
va) =0, Y& =1. (1-60)
In order to be able to apply lemma 1 to the ¥,(£) we have to show that
Un(0) = ¢,(0)>0 (n=0,1,2,...). (1-61)
On differentiating (1-57) and putting £ = 0 we find that
%;(O) = Hy ¢;~1(0> -}—¢n-—1(0)9 (1'62)

whence (1-61) follows by induction, because ¢,_,(0) >0 by (1-24) and ¥4(0) >0.
Bearing in mind that

WO =TT EA) (=12, (1:63)

we obtain the following facts about the eigenvalues of the modified sections:

THEOREM 2. The eigenvalues of B™ (n = 1,2, ...) are distinct; one of them is zero and the others
negative, thus

0= >pfm>...>p". (1-64)
The eigenvalues of B®~V separate those of B®, i.e.
0= f§" = B0 >0 > B0 > > i > firg0 > i, (1-65)

The spectral theory of §1 may be applied to B®. The eigenvectors «” and »® corresponding
to f” may be taken to be any non-zero row or column of

adj (B0 — Bw) (1-66)

respectively. Since A® and B® differ only in their last element, the cofactors of the last row
and of the last column are common to

|EI—A™| and | EI0—BO)|. (1-67)

Apart from v{” when 1, = 0, the eigenvectors of B® can be obtained from (1-38) and (1-39)
simply by replacing a{® by . Thus

! = (LmyGo(F;7), ma$r(B7), s my by (F5)) |

1-68

(0<r<n; 2,>0), J (1:68)

= Bl lB B b8 )
(0<r<nif1;>0, and 1<r<nif A, = 0).
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H ) — gy . ) < [ (m\ 12
eénce Ty u," vy O+V§1 v~1mv{¢v—l(ﬁr )} ‘ (17())
(0<r<nif 1,>0, and 1<r<nif 4, = 0).
We note in particular that
6 = A+A5 X w, /i, (A9>0), (1-71)
v=1

because . $y-1(B5”) = §,-1(0) = A/l ;.
When 1, = 0 we cannot use (1:69) for r = 0 as this would yield a zero vector. Instead we take
o = (1,1,...,1) (4, = 0),

which obviously satisfies B®y{’ = 0, and we now get

L =1 =0, (172

because uy = (1,0,0,...,0) (1-73)
if 1, = 0. :

The idempotents of B® will be denoted by ,
| ED = o a9 = (69, ), (1-74)
where &P (1, J) = i*lmj¢i—l(ﬁ7§n)) ¢j—1(ﬂr(n))/’7r(") (1-75)
, (0<r<nif,>0, and 1<r<nif 1, = 0)
and W) =0y =0 (1-76)

In 6rder to construct a solution from the modified sections we define
GO(t) = (g (1))
as the solution of < ¥ = ¥() B0 (177)

satisfying the initial conditions ¥(0) = I®. Thus

Go(1) = exp (tBY) = 3 exp () £, (1-78)

e g0 () = éo exp (147) 67 (i ). (1-79)
In analogy with (1-14), (1:15) and (1-16) we now have

gP(M)=0 (4,5 =0,1,...,n; £=0), (1-80).

gP(0) =3d; (5,7=0,1,...,n), (1-81)

]ﬁogg?’(t) =1 (i=0,1,...,n;t>0), | (1-82)

no inequality sign occurring in (1-82) since all row-sums of B® are zero.
From the expressions as exponentials it follows at once that F®(¢) and G®(¢) satisty the
Chapman-Kolmogorov equation
FO(1+7) = FO(f) Fo)(7), , (1-83)

O (- 7) = GO(£) GO(7), (1-84)
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i.e. explicitly S (t4-1) = k"go £ ) £ (n), (1-83")
(0<i, j<n).
g (trr) = 2 g (0) & (7). (1-84')

Since a finite matrix Z commutes with exp Z, it follows that F®(¢) and G®(¢) not only
satisfy (1-11) and (1-78), but also

(% F@(f) = AmF®(4) (1-85)
d | ‘
and $60() = BOGo(q), (1-86)

respectively. These equations, which play an important part in the general theory of
Markov processes, are called the backward equations.

We conclude this section by proving some inequalities for the eigenvalues of 4™ and
B®, and for the matrices F®(¢) and G™(z).

THEOREM 3. In the notation of theorems 1 and 2,
0=fW=a® (r=0,1,...,n). (1-87)
Proof. First, let 1,>0. Putting { = o{® in (1-54) we have
(@) = =4, 8, 1 (),
whence by (1'34)  sgny), (&) — —sgn,_, () — (—1)*!
(r=0,1,...,n). It follows that each of the intervals
(o), (47, .., (i)
contains a (non-zero) root of ¥,(§) = 0 so that
af? > f{m > o > B0 > a0 > > i > o),

This, together with 0 =fgm>a,
proves (1-87).
Next, if 1, = 0, we divide (1-54) throughout by £ and, in the notation of (1-25) and (1-58),

e gt B AGE N AR AG]
The above argument may be applied to the functions ¢,_, (£) and ¢, () yielding the result that
0> >a®> .. >pFm g,

Since we now have 0 = f{® = af’, the theorem is proved also in this case.
THEOREM 4. For fixed t (=0),

| PO =10 (0<i, j<n) (1-88)
and SP) =fP) (0<d, j<n—1). (1-89)
Proof (see D, lemma 4). If U= (u;), V=/(v)
are matrices of the same order we use the notation
u=v
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to express that U =
for all 7 and j. Clearly, U=V=0
implies that exp U=exp V.
As on p. 327, let ; g = max (Ag, Ay +fyy - oy A, F 1)
and put U= A" 4 ql®, V= B0+ qI™,
Evidently, by (1-12) and (1-49), Vr=U>=0.
Hence, if >0, exp {t(B® 4 gl™)} = exp {t( AP 4 qI™)},

e exp (¢B™) > ek exp (tA™),
and therefore G(8) =F™(t).
In order to prove (1-89) we introduce the matrices

Aw= 0
A® ( )

and F{P(t) = exp (24§P).
Since AD - gI™ = AG) - gI® =0,
we deduce that, for t>0, € exp (1A™) = el exp (1AP),
and hence Fo) =Fm(1).

On restricting this result to the first » rows and columns we obtain (1-89).

CHAPTER II. SPECTRAL THEORY FOR BIRTH AND DEATH PROCESSES

4. The spectral resolution (15> 0)

The formulae of the preceding chapter, relating to the spectral resolutions for the finite
sections A®, B® and for the corresponding functions f{”(¢#), g (f), will now be used to
construct solutions f;(#), g;(¢) of the infinite system of equations (0-14). This will be done
by means of a limiting process, whose discussion is facilitated by writing the spectral
resolution in Stieltjes integral form. We shall first treat the case A,>0; the modifications
needed when A, = 0 will be dealt with in §5.

For the section A®, we define a ‘spectral function’ p®(x) as follows: p®(x) is to be a non-
decreasing step-function, defined for — 0o <<x < 00, with discontinuities 1/6 at

x=a" (r=0,1,...,n) and p®»(0) = 0.
Explicitly, p®(x) is given by
0, x=af’;

L

1 1
p(n)(x) = —“(970"7_1'(9?1)—}'“'4"@;55)7 a§@1<x<a§.”’ (7’ = 09 "‘3n_1); |

(2:1)

1 1
“(W;‘F...’]ngﬁ), x<o¢§,"’. ;
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Observe that p®(x) = 0 for x>0, because 0>a{”. From (1-46) and (1-48) it follows that

fz;n)(t) = liAlmjfﬁzsz‘-—l(x) ¢j—l<x) e*dp™(x) (0<i<n, 0<j<n). (2-2)

The integral (like all integrals with unspecified limits in this chapter) is taken from — oo to
+ o0, i.e. effectively from — o0 to 0, p®(x) being constant for x>>0. In particular, since
(0) = 4y, it follows by putting £ = 0 in (2-2) that

v [ 62(3) 650(6) dp(x) = 8, (0<in, 0 j<n). (2:3)

Similar formulae can be developed for the sections B®, the spectral function ¢®(x) having
discontinuities 1/3® at x = g{®. Explicitly,

0 x>0
- (1 Fi++l—) o <x<ff™ (r=0,..,n-—-1);
o) =\ gy p) T Y ’ (2-4)
1 1
- —~—+.-.-|—*—n'), x<fm.
(:;gn) s &
Then, by (1-75) and (1:79),
g6 = li—lmjf¢i—l(x) ¢;1(x) e*do®(x) (0<1<n, 0<5<n), (25)
and since g(0) = J;;,
li—lmjf¢i—l(x) ¢;1(x) do®(x) = 9; (0<i<m, 0<j<n). (2-6)
We may also observe from (1-6) that the sections A®, B®™ themselves have spectral
resolutions given by " "
A(n) . z OC(,")D;"), B(n) o z ﬂ;n) E’{n).
r=0 r=0

These two results, when expressed in Stieltjes integral form, read

= oy [ 8) 81 0) )|

(0<i<n, 0< <n); (2-7)

bﬁ-}’) = lz’—lmjfx¢i—-l(x) ¢j—1(x) do'(”)(x)J

they will not be used in this paper but are stated here for the sake of completeness.
The limiting process to be applied to f(¢) and gi(¢) is based on some well-known results
of Helly (1921), which are collected together in

Lemva H. Let a sequence of non-decreasing functions p™(x) be defined for — oo <x<< oo and
uniformly bounded, i.c. | () | <K, (2-8)

K being independent of x, n. Then there exist a non-decreasing function p(x), and a subsequence

()} of ()}, such that
P (x) —>p(x) as m—>00 (2-9)

Vor. 246. A. 43
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at all points of continuity of p(x). Moreover, if f(x) is continuous for — oo <x<0, then
0 0
[ 7 dpte) > [ A dot), (210)

provided that the infinite integral on the left in (2-10) converges, uniformly with respect to ny; that is to
say, if, gien €0, there exist X(¢) and N(¢) such that

’ X(e)
J S(x) dp@o(x ’<6 for n,>N(e). (2-11)

In order to apply this lemma, we must check that p®(x) and ¢®(x), given by (2-1) and
(2-4), satisfy (2-8); since p™(0) = ¢®(0) = 0, we have only to show that

fdp(m(x), fd,,m)(x)

are uniformly bounded. However, in order to verify the condition (2:11) we shall need the
more general fact that

[1ximdmoe), [1xmdon) n—-0,1,2,..)

are uniformly bounded (for each fixed m). This we prove by observing that ¢,_,(x) has
degree s and leading term x°, and hence that any power 4™ can be expressed uniquely as
a linear combination

X" = sgo cms ¢s~1 (X) .

Hence, for n>m,

hwwwwz%wﬂ ) dp(x)

m

=3 [hiam e = S, -

on using (2:3) with ¢ = s, 7 = 0. Thus
0
[* 1eimagmn = &, Lol (), (212)
—00 0

and by the same argument
0
f | x|mdo®(x) = K, (n=m). (213)

We can now, using (2-12) with m = 0, select a subsequence p™(x) of p™(x), with limiting
function p(x) as in lemma H. We assert that, for any polynomial P(x),

0
f P(x) e dpd(x) - f Werdp(x) as mp>o0 (120).

It suffices to prove this when P(x) = ", and by Lemma H we need only Verify condition
(2-11) (with f(x) = ame*,t>=0). Now

-X
I(X) = f xm e dp®e (x)

-X
<[ lxirdpmi)

—

<lf"X[ x|+ dpw)(x) <lf0 | x|+t dp®(x) = K,
\X o 1 . : \X % . X H
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for n,=m-+1 (using (2-12)). Hence I(X) <e for X = X(e)>K€ and 7, > N(e) = m, and
m+1
the assertion follows from lemma H. It now follows from (2-2) that £ (¢) tends, as n,— o,
to a limit f;;(¢) given by
Folt) = boym [0 651 (5) e do(a), (214)
and also that £5(0) =8, = I_ym, f bi1(x) 6,1 (%) dp(z). (2:15)

Moreover, (2-14) may be differentiated under the integral sign (the differentiated integral
being uniformly convergent for £>0), and hence f;;(¢) exists and is given by

S0 =y, [ 1(0) 1) e dp(v).
But £’ () is given by a similar expression with p®?(x) instead of p(x), and it follows that
Silo) = lim (o).
From the equation Fow' () = Fo(f) Ao,

retaining only the components f7P(f) with 0<¢<n,, 0<j<n,, and from the form (1:12) of
Ao, we see that

S () = G Jia (8) — (A4 ) S50 )+ﬂj+1ﬁ?}’i1(t> (0<i<<my, 0<j<m)
with the convention (0-3) that A_; = g, = 0). If we now let n, — 00, it follows that
1= Ho k

fzj() ] 1f,; 15— (4 +/aj)f()+luj+1j;‘,j+l(t)ﬁ (2-16)

so that p,; = f;;(¢) is a solution of the infinite system (0-14). Itis also clear (from (1:14) and
(1-15)) that f;(t) =0 for >0, and f;;(0) = d;;. Finally, from (1-16) we can easily deduce that

éo £ <1. (2:17)

For, taking a fixed J, and n,>J, we have
J ng
2 fgPn< 2 [P <1
Jj=0 Jj=0

J
Let n,— o0, then we obtain > fi(H<1,

and (2-17) follows on letting J— c0.

The whole argument can of course be repeated for g?(#), choosing a convergent sub-
sequence 0™ (x) of ¢®(x) with limit function ¢(x). In this way we find that g9(¢) tends
to a limit g;;(#), and that

&lt) = lr-m; [ §,1(x) ¢, () e da(), (2:18)
gij(()) = 31';' == li—lmjf¢i~1(x) ¢j—l(x> do(x), (2:19)
gz,]( ) /1] lgl] 1( ) (/1 *ﬁ%) gu(t) T/u_[+1gl,j 6—1( ) (220)

43-2
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also g;;(t) =0 for t>0, g;(0) = d;;, and

i

jgo gi(H) <L | (2-21)

We mention finally that from (2:7) we can obtain ‘spectral resolutions’ for the infinite
matrix 4 in terms of the spectral functions p(x) and o(x), viz.

a;; = li-1mjfx¢i—l(x) ¢;-1(x) dp(x) = i—lmjfx¢i—l(x> $;-1(x) do(x). (2-22)

The existence of such spectral resolutions could be deduced from the theory of infinite Jacobi
matrices (Stone 1932). (The matrix 4 is not a Jacobi matrix as it stands, since it is not
symmetric, but can be transformed into a Jacobi matrix by multiplying rows and columns
by suitable factors.) Indeed, some of the formal machinery of chapter I, and the ‘selection’
arguments of the present chapter, are familiar tools in the theory of Jacobi matrices and of
the moment problem (cf. Stone 1932).

Further information about the solutions f;(#), g;(#) can be deduced from theorem 4.
First, since f{°(¢) <g?(t), it follows that (cf. D, theorem 3)

Ji()<g;{t) (t=0). (2-23)
We are unable to give an example where strict inequality occurs in (2-23), but there is little
doubt that such examples exist, since we shall be able to give examples of the corresponding
phenomenon when A, = 0. Secondly, since /() =f$V(£), it follows that, as n—> co, the
sequence f;7(¢) converges as it stands to a limit f;;(£), and hence any subsequence f(f) con-
verges to this same limit. It follows that the sequence p™(x) must also converge as it stands
(no selection being required) ; for, if not, there would exist two subsequences with distinct
limit functions, p(x) and p*(x). But, from (2-14) with ¢ = j = 0, we should then have

Junlt) =X [ e dp(x) = 4 [ e dp*(x),

and by the uniqueness theorem for Laplace-Stieltjes integrals (Widder 1941, p. 63) p(x)
and p*(x) must after all be identical. We cannot, in general, assert that the sequences
&9(t) and ¢®(x) converge as they stand, though we shall show in chapter III that they do so
if restrictions are imposed on the behaviour of the coefficients A; and #; (as j — 00). A further
consequence of the monotone convergence of f(t) to f;(¢) is, by an easy deduction (D,
theorem 1) from (1-83'), that f;;(¢) satisfies the Chapman-Kolmogorov equation

Filt+1) = 3 F(04500). (2:24)

We can prove that g;;(#) satisfies (2-24) only under further assumptions on 4; and g;.

5. The spectral resolution (A, = 0)

The analysis of §4 must be modified when A, = 0. The difficulty is that, while formulae
similar to (2-2) and (2-5) still hold (at any rate if i>>1 and j>1), the functions p®(x) and
0®(x) are, in general, not uniformly bounded so that the limiting process based on lemma H
can no longer be applied. The difficulty can be surmounted by modifying the definition of
the spectral functions. When 4, = 0, the polynomials ¢,_,(x) (s>1) are of the form
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so that a formula analogous to (2-2) would involve (when:>1,j>1) an integral of the form

[#261(0) 3,1 (0 = dpn ).

We shall find that if we remove a factor x and replace the above integral by

[ B 1) e i),

the modified spectral function p®(x) (and the analogous ¢®(x)) does remain uniformly
bounded. We shall also find that, as might be expected, modifications are needed when
¢ = 0 or j = 0 because of the changes in the expressions for d’(z,7) and ¢{?(z,j) when 4, = 0
(cf. (1-45) and (1-76)).

We start by rewriting the expression (1-46) for d™(i,7) (valid for 1<r<n when 1, = 0)
as follows:

(i) If1<i<nand 1<j<n, then

A0, ) = b (@) s (o47) ()0 .
Defining % by ow = 0™/ oa®|  (r=1,...,n), (2-25)

we have E9(0) = — by sy, (4, ()7 (2:26)
(ii) If7i = 0, then (i, j) = 0, (2-27)

because /,_; = [_ 1—/10—0
(iif) If 1<i<m,j = 0, then B
&Pt J) = Ly a8y () 167
= — b1 Gy () [0, (2-28)
Now define p™(x) to have discontinuities 1/6 at x = o{® for r = 1,2, ..., n (note that r = 0
is now excluded), and to have p®(0) = 0; explicitly
0, x=o;

PO (x) = (g(n)"" +5(n)) o <x <o (7:13--'5”_1)5> (2-29)

( s 5(,1)) K<),

Then, from (2-26) to (2-28) and (1-45), (1-48), we see that /() is given by
S = —lymy[xp (x) 6 () e dp(x) (1<i<mi<j<n),  (2:304)
Jop(t) = 8y;  (0<j<n), (2300)
JB(8) = Cz-(")*é-lf%_l( x) 7 dp®(x)  (1<i<n). (2-30¢)
Similarly, we define 7w = g®/| | (2-31)
and ¢™(x) to have discontinuities 1/7® at x = f® forr = 1,2, ...,n
’ 0, x= 175
RN SRR R S A
oM(x) == 7 7m)° b r 1 4 (2:32)
1
et xa
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342 W. LEDERMANN AND G. E. H. REUTER ON THE
Then ")(t) Lioymg|xg; (%) ¢,y (x) e do®(x) (1<i<n,1<j<n), (2:33a)
g7 =8y (0<j<n), (2:330)
) = 14 [f (1) e do(n) (1<i<n). (2:33¢)
In particular, since f{’(0) = g(0) = 0 for 1<<i<<n, (2-30¢) and (2-33¢) imply that
[Bir(0) dpo () = 0L (2:34)
[#i1() do() = 11, (2:35)

Since x™ (m>0) is a linear combination of ¢y(x), ..., ¢, (x), and {?<1, we can deduce as

in §4 that
Jistmapocs <x.) |
’ L (m=0,1,2,...; n>m). (2-36)
[1x1mdoo) <K,
This enables us to repeat the arguments of §4, selecting subsequences p9(x), 0(x) of

0™ (x), a®(x), with limit functions p(x), ¢(x). We need only observe in addition that, by
(1-41), {™ increases and tends to a limit {; as n— oo, where

i—1 o
G=1 =1-(3u)[(Sw) G=D; (2:37)
v=0 v=0
alternatively =1 (1=0) if %w;‘ = 00, (2-38)
Ci=(§w;1)/(§w;‘) it S uyi<co. (2-39)
v=i v=0 0
Hence f7%(t), g*(t) tend to limits f;(¢), g;(¢), where
Si(t) ==l ym;|xd; () §i(x) edp(x)  (i=1,)=1), (2404q)
ij(t) =0 (J=09), (2:400)
G—1i- 1f¢ x)edp(x) (i=1); (2-40¢)
gi(#) = —liam; ;1 (%) ¢4 (%) e do(x), (241q)
ng(t) == 0y, (J=0), ’ (2:415)
Golt) = 1=l [, e da(y) (1) (2410)
Both f;;(¢) and g;;(t) are solutions of the system of equations (0-14), and have the properties
0<f(t) <g;(0);
(¢>0)

Jgofij(t) <l, jgogij(n <1
fij(o) == gij(()) = 3@'-
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As in §4, the sequences /() and p®(x) converge as they stand and no selection process is
needed to obtain f;;(¢) and p(x). Also (2-24) is again valid.

6. Asymptotic values

The results of §§4 and 5 enable us to deduce the behaviour of f;;(£) and g;(#) as - co.
We recall the well-known fact that, if P(x) is a polynomial, p(x) non-decreasing, and

ﬁ, | P(x) | dp(x) < oo,

0

then Lim | P(x)e*dp(x) = po P(0), (2-42)
I—>0 — 0

where p, = p(+0) —p(—0) is the discontinuity of p(x) at x = 0.1 Since the integrals in the

expressions for f;;(7), g,;(¢) (cf. (2-14), (2:18), (2:404, b,¢), and (2-41 4, b, ¢)) are all of the form

occurring in (2-42), it follows that as - 00, f;;(f) and g;(#) tend to limits which we shall

denote b . . .
enote by Jii(o0) = }Lrg.ﬂj(t)ﬁ gij(0) = %Lrggij(t)' (2-43)
Before deriving explicit formulae for these quantities from (2-42), we shall show that some

information can be obtained merely from the fact that f;;(c0) and g;(oo) exist. First, it
follows easily from (2-17), (2:21) and (2-23) (which are valid also when A, = 0) that

0<fij(oo)<1> 0<£ij(°®)<15 (2-44)
Sh)<l, £ g(o)<t; (245
Jii(0) <gi(0). (246)
Secondly, since lim f;;(¢) exists (for each i and j), eq<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>